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Description: New spectroscopic measurements of the Earth’s exposed surface to derive mineralogy are 
required to address key science and application targets. These measurements will advance 
understanding of fundamental geological processes, natural and anthropogenic hazards, soil 
geochemistry and evolution, and the location of energy and mineral resources.  
 
 
Theme V: Earth Surface and Interior: Dynamics and Hazards 
Core, mantle, lithosphere, and surface processes, system interactions, and the hazards they generate. 
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1. Science and Application targets 
 Fundamental questions about geologic processes, the natural resources that enable modern 

society to persist, and the ability to characterize and predict natural and anthropogenic hazards are 
closely tied to surface mineralogical composition and related physical properties.  Yet the Earth’s 
exposed rock and soil surface has been incompletely measured. Multiple community reports have 
determined that global compositional measurements are required to determine the link between 
surface-atmosphere interactions, biogeochemical cycles, and climate, tectonic, deep Earth, and surface 
processes [USGS 2007; NRC, 2007; 2010; 2012; NASA, 2014]. New comprehensive high quality 
measurements of the type successfully used for mapping the geochemistry and mineralogy of other 
planetary surfaces (e.g., Mars, Murchie et al., 2009; the Moon, Pieters et al., 2011; asteroids, De 
Sanctis et al., 2013) are urgently needed to close this gap. The science and applications targets 
identified below also directly address the goals stated in the 2007 Decadal Survey (NRC 2007) for 
understanding Earth surface changes, how the Earth supports life, and how human activities will 
impact future sustainability. A key element of “Theme V. Earth Surface: Dynamics and Hazards” is 
a suite of urgent science questions and applications that can be uniquely advanced with new 
comprehensive global measurement of the Earth’s exposed surface mineralogy, geochemistry, and 
soil properties. This RFI response directly addresses this key element of Theme V.  
 
1.1 New insights and constraints on fundamental geological processes 

The composition of the Earth’s surface preserves the fingerprint of coupled geodynamic, 
surface processes, and climate interactions that build and modify continental structures over a range of 
timescales. Plate margin evolution and dynamics, construction of continental scale stratigraphy, 
accumulation of economic resources, and associated geologic hazards and environmental impacts and 
sustainability derive from understanding these interactions. Some selected examples of the 
transformative nature of local mineralogical mapping done to date demonstrate discoveries that will be 
enabled with new accurate global surface mineral measurements of the Earth’s exposed surface. 

Fundamental programs in the earth sciences (NSF’s GeoPRISMS, NASA’s Earth Surface and 
Interior) are focused on the origin and evolution of continental crust, geochemical cycles, subsurface 
fluids and magmas and their interactions. Many regions have seen great benefits from application of 
remote mineral mapping (to date mostly from airborne instruments). For example, regional mineralogy 
mapping has provided new compositional basemaps for the interpretation of structural geological 
features, applied in reconstructing the fault offsets and lithologic controls on alluvial fan formation and 
erosion rates in Death Valley, extending field data taken in limited areas (Kruse, 2012). In the Oman 
ophiolite, orthopyroxene-rich cumulates, previously undocumented, were discovered using regional 
imaging spectroscopy and led to the promulgation of a new model for diapirism and creation of magma 
chambers in oceanic crust formation (Roy et al., 2008; Clenet et al., 2010). The spatial structure of 
compositional variation of ultramafic and metamorphic rocks in hard-to-access ancient continental 
cratons in Africa and Australia has also been mapped (e.g. Metelka et al., 2015; Rowan et al. 2005). In 
volcanic studies, remote sensing of mineralogy has provided crucial information for mapping and 
monitoring ash composition and flow history (e.g. Rocha-Lima et al., 2014; Wright et al. 2008; 
Guerrieri et al. 2015). Key ongoing areas of research informed by maps of mineralogy include the 
paleostructure of subduction zones and spreading ridges, and the mapping of fault zones to understand 
plate movement. Global mineral mapping at the tens of meters scale extends and connects isolated field 
measurements and vastly improves capabilities for differentiation of unit lithologies. 

New comprehensive measurements to identify minerals and discriminate lithologies are 
required with the capability to distinguish carbonate and sedimentary facies, including fine 
variations in carbonate composition and clay mineralogy, map hydrothermal and metamorphic 
indicator minerals, and distinguish basaltic, andesitic, and mafic compositional suites. 
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1.2 Assessment and response to natural and anthropogenic hazards 
Modeling of natural and anthropogenic Earth surface hazards is a fundamental goal of remote 

sensing, and as articulated in multiple community roadmaps compositional measurements are an 
imperative (NRC, 2007; USGS 2007). More precise surface compositional information is required to 
assess and mitigate hazards in advance of their occurrence, and to respond to hazards and disasters by 
classifying regions of highest priority for intervention and remediation.  
 For example, the likelihood of landslide hazards is critically dependent on the type and quantity 
of underlying bedrock and soils. Studies have previously used interferometry, textural analysis, or 
thermophysical properties to identify existing slides as well as incipient slides where the ground 
surface remains largely intact (e.g. Soeters and Van Westen, 1996; Whitworth et al., 2005; Metternicht 
et al., 2005). However new, accurate surface mineralogy is required to advance these efforts and 
distinguish dangerous swelling clays from similar phyllosilicates, which do not swell when wetted and 
hence pose less danger. Existing soil maps used in landslide models (e.g. Hong et al., 2007) are coarse 
scale and have to be interpolated to the finer scale of available topographic data. This results in a vast 
simplification of the spatial scale of true variability (e.g. Hubbard, 2015), particularly in vulnerable 
mountain environments where tectonically deformed geologic units vary over meters to hundreds of 
meters scale. Additionally, zones of localized hydrothermal mineralization pose special threat of debris 
flow creation because of their alteration to swelling clays (e.g. Ambers et al., 2001; Opfergelt et al., 
2006). Imaging spectroscopy measurements in the Cascades have demonstrated detection of mineral 
zones with hazards not previously found in ground based surveys of the rugged, hard-to-access terrain 
(e.g. Crowley et al., 2003).  

Additional hazard tracking and monitoring efforts have employed spectral mineral mapping to 
detect iron sulfates diagnostic of acid mine drainage and to map their extent in river catchments 
(Swayze et al., 2000; Choe et al., 2008; Riaza et al., 2011). The problems presented by the presence of 
asbestos, whether naturally occurring (Swayze et al., 2009) or in manmade construction materials on 
rooftops (Bassani, et al., 2007; Frassy et al., 2014) has been spatially mapped using imaging 
spectroscopy.  Collection of high spectral resolution datasets have also been proposed for guiding 
remediation of residual contamination at brownfield sites (Slonecker and Fisher, 2014).  

Advancing the science of Earth surface hazard monitoring requires the ability to accurately 
identify surface mineral constituents, map their distribution, and estimate their abundance. Key 
mineralogies are the smectite clays related to landslides and weak zones in volcanic terrain. Iron 
oxides and sulfates are important for natural and mine-related acid drainage hazards. Serpentine 
and dust source region mineral mapping can be used to assess and mitigate dust-related hazards. 
Space-based, accurate, uniform mineral maps would enable high-resolution inputs to hazard models 
to be applied globally, serving developing and advanced countries in a rapid and cost effective way. 
 
1.3 Advance soil composition and process knowledge 

Soil is a key element of the Earth’s Critical Zone (NSF 2005). At present, global soil properties 
and mineral composition are poorly characterized. Earth system models rely on extrapolations from a 
database of fewer than 5000 samples globally (e.g., Claquin et al., 1999). Yet, soil properties revealed 
at the surface are fully accessible to assessment by remote sensing and indicate the processes that form 
soil as well as important underlying components (Whiting et al. 2006). The soil surface is exposed for 
observation in arid regions, tilled agricultural regions, and other zones where vegetation has been 
temporarily cleared. Comprehensive measurements of the Earth’s exposed soil properties are needed as 
a baseline now and to initialize models to predict future trends in soil fertility and degradation. 

The surface reflectance spectrum of soil is strongly tied to its mineralogy and particle size 
(Whiting et al. 2006; DeTar et al. 2008). These properties influence soil cation exchange capacity, 
which is an index of nutrient availability in soils, specific surface area, water holding capacity, and 



 
 

3 

response to mechanical disturbance, e.g., tillage, compaction from heavy machinery, grazing (Ben-Dor 
and Banin 1995). Key geochemical components of soil that influence surface reflectance include 
nutrients, e.g., Mg+2, Ca+2, K+, N (Boggs et al. 2003), iron oxide and carbonate concentration, (e.g., 
Lagacherie et al. 2010), and also components related to salinity (Ben-Dor et al. 2002). The organic and 
clay components of soils influence cation exchange and water holding capacity and the formation of 
soil crusts (De Jong et al. 2009) that in turn influence soils' potential to act as a source or sink of 
atmospheric CO2 (Bartholomeus et al. 2008; Gomez et al. 2008; Stevens et al. 2008; Stevens et al. 
2010). Measurement of surface properties, e.g., mineralogy, moisture, organic carbon content can 
provide information on the formation and erosion of soils (Goldshleger et al. 2001; Lobell and Asner, 
2001; Demattê and Nanni 2003; Ben-dor et al. 2004; Ben-Dor et al. 2006; Galvão et al. 2008). Among 
the important large-scale changes that humans make to soils is salinization, a major form of soil 
degradation worldwide. Surface geochemical and reflectance signatures can reveal levels of soil 
salinization (Dehaan and Taylor 2002; Dehaan and Taylor 2003).  

To advance soil science, new measurement of the surface composition of arid lands, fallow 
fields, sparsely vegetated, and temporarily cleared areas are required to update global 
soil databases with uniformly measured mineralogical information and to provide estimate of iron 
oxide, clay, organic carbon, carbonate, and salinity metrics for input into geochemical, vegetation, 
carbon cycling, and radiative forcing models. 
 
1.4 Surface Resource Identification and Policy Support  

Increased demand for limited resources requires an immediate and comprehensive assessment 
of the exposed surface mineralogy of the Earth, which provides a key window into the potential 
available new resources as well as a baseline for resources currently being extracted (Rowan et al., 
1995, Sabins 1999, Kruse 2012, Kruse et al., 2012, Swayze et al., 2014, Calvin and Pace, 2016). 
However, a global inventory of resources using surface mineral composition as a key indicator of 
available resources does not yet exist. In this context, resources include both mineral resources, e.g., 
precious and base metals, aggregates, and building materials, energy resources in conventional and 
unconventional hydrocarbons, and renewable geothermal energy. Global strategic areas include 
development of raw material inventories, monitoring development, assessment of future resource 
demand, and balancing development with environmental impacts and human health hazards associated 
with resource extraction. This requires accurate and comprehensive measurement of mineralogy 
exposed at the surface.   Despite potential for mineral development, many remote areas remain largely 
under-explored.  Mineral mapping, primarily with airborne measurements, has occurred in remote and 
vegetated regions such as Greenland and Alaska (Bedini, 2011; Hoefen et al. 2015), over large regional 
areas such as Afghanistan and the Western USA (Kokaly et al. 2011, 2013; Mars, 2011; Rockwell and 
Hofstra, 2008). Remotely sensed imaging enabled mineral resource assessment in war-torn 
Afghanistan where traditional field mapping was a potentially deadly undertaking (King et al., 2012).  

New global measurements of the exposed surface that allow detail characterization of 
hydrothermal alteration suites, temperature dependent mineralogy, and features associated with 
hydrocarbons are required. 
 
2. Utility of the measured variables.  
  The targets identified in the previous sections can be addressed with new comprehensive 
measurements of the Earth’s exposed surface mineralogy and geochemistry. Compounds exposed 
at the Earth’s surface absorb and scatter light differently across the visible and infrared portions of the 
spectrum due to their molecular/crystal/structural properties (e.g., Clark, 1999). Thus, the interaction of 
light with matter recorded in a contiguous spectral measurement provides the ability to detect, identify, 
and quantify the surface mineralogy required to achieve the needed science targets described above. 
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Figure 1 shows an example of the spectral signatures for ten relevant Earth surface minerals as full 
spectra from 400 to 2500 nm (0.4 to 2.5 µm). Also shown are the spectra convolved to the Landsat 
thematic mapper bands. A full spectral measurement at high spectral resolution is required to 
deconvolve the effects of the atmosphere, distinguish between important minerals with similar 
signatures, and quantify contributions from multiple materials given overlapping signatures (e.g. 
Swayze et al., 2003, Clark et al., 2003; 2014). The utility of this spectroscopic approach for measuring 
the Earth’s surface was identified in the NRC’s last Decadal Survey (NRC 2007) and Landsat and 
Beyond report (NRC 2013). 
 Algorithms to extract geochemistry and mineralogy from measured spectra are well advanced, 
being based on more than 20 years of high quality airborne imaging spectrometer measurements of the 
Earth’s surface. Figure 2 shows a spectral fitting method (Clark et al., 2003) to identify the clay 
mineral kaolinite at Cuprite, NV. Figure 3 shows a recent mosaic of the Salton Sea, CA region with 
several diagnostic mineral signatures. This was measured by AVIRIS as part of a campaign to simulate 
data sets of the 2007 Decadal Tier 2 mission HyspIRI (Lee et al., 2015). Figure 4 shows compositional 
maps generated using spectral feature fitting. The region includes the science and applications targets 
identified here. The detailed geochemistry and gradients revealed provide insight into related tectonic 
processes along the San Andreas fault (e.g. fault offset, fluid alteration). Landslide risk as related to 
mineral composition in steep terrain can be assessed (Hubbard 2015). The Salton Sea region is a 
known mineral dust source hazard area, and the surface composition of exposed shorelines can be used 
to constrain models and predict risks. The soil composition of the fallow agricultural fields and 
adjacent lands are measured, and repeat acquisition can capture different fields with exposed soil for 
comprehensive mapping. Information on current mining activities and potential future mineral resource 
extraction is revealed through identification of alteration mineral exposures. This example from 
airborne measurements demonstrates the approach that would be used to address science and 
applications targets globally for the exposed terrestrial surface of the Earth. 
  
3. Key requirements for achieving the science and application targets 
 As discussed in Section 1, these targets require the identification of a variety of discrete 
minerals and lithologies with sufficient spectral and spatial resolution to map their distribution and 
estimate their abundance. This includes numerous metamorphic indicator minerals; basaltic, andesitic, 
and mafic compositional suites; swelling clays (smectites) and serpentine (asbestiform) minerals; 
characteristic hydrothermal alteration suites; temperature dependent mineralogy; and features 
associated with hydrocarbons. For assessing acid generation potential, measurement of iron oxide and 
select sulfate minerals is required. To advance soil science, measurement of the composition of arid 
lands, fallow fields, and sparsely vegetated regions to update global soil classifications with 
quantitative mineralogical information and provide estimates of iron, clay, organic carbon, carbonate, 
and salinity metrics is required. All these surface materials and mineral assemblages have well-
known, diagnostic spectral absorption features.  

The requirements and their links to the science and applications targets are shown in Table 1. 
The spectral range and sampling required is from 400 to 2500 nm with ≤10 nm sampling. These 
spectral requirements are derived from multiple studies (e.g. Clark 1999, Clark et al., 2003, Clark et al., 
2014) and a detailed analysis examining spectral characteristics versus signal-to-noise ratio (Swayze et 
al., 2003) to detect the phases noted above. This spectral range also contains the atmospheric features 
to allow automated atmospheric correction (Gao et al., 1993, 2009, Thompson et al., 2015, 2016). The 
radiometric range of the spectral measurements must span from dark to bright materials exposed on the 
Earth’s surface. The radiometry of the measurements must account for the solar illumination, two-way 
transmittance of the atmosphere and the reflectance properties of the material. Figure 5 shows the 
reference top of atmosphere radiance from a 0.05, 0.25, 0.75 reflectance surface with solar illumination 



 
 

5 

at 45° modeled with MODTRAN and a predicted signal-to-noise ratio (SNR) consistent with mapping 
≥90% of the minerals (Swayze et al., 2003). The reference SNR is also well above that achieved by the 
existing NASA Hyperion instrument (Ungar et al, 2003, Middleton et al., 2013), a technology 
demonstration that was shown to be broadly capable of mapping surface mineralogy (Cudahy et al., 
2001, Kruse et al., 2003, Gersman et al., 2008, Chudnovsky, et al., 2009, Clark et al., 2011) though it 
was limited by a 7.5 km swath, restricted on-board storage, and downlink. 

The spatial sampling requirement is ≤30 m nadir to provide access to high fractional 
concentration of constituents of interest with sufficient SNR for identification and abundance 
assessment. Spatial sampling of 30 m also provides continuity with Landsat and related multi-spectral 
measurements. A swath width of ≥90 km provides sufficient temporal sampling to capture cloud free 
observation over ≥75% of the terrestrial surface in a year based on refined cloud analysis from MODIS 
observations (Mercury et al., 2010). This would provide full terrestrial imaging every 32 days. Over 
two years, ≥85% of the terrestrial surface where surface mineral and soils are exposed will be 
measured. A goal swath to provide repeat coverage every 16 days could also be implemented to match 
Landsat frequency. To enhance the disaster response capability, the measurement should include a 
pointing capability to target specific areas of interest within 3 days of designation. 
 
4. Near Term Success and Affordability 
 The spectral measurements described above can be achieved affordably in the coming decade, 
because of the investments that were made in response to the global terrestrial and coastal observing 
missions that were outlined in the 2007 Decadal Survey (NRC 2007), the Landsat and Beyond report 
(NRC 2013), and other studies. These measurements would build on a legacy of airborne and 
spaceborne instruments including airborne: AIS (Vane et al, 1984), AVIRIS (Green et al., 1998), and 
AVIRIS-NG (Hamlin et al., 2011) and space: NIMS (Carlson et al., 1992), VIMS (Brown et al., 2004), 
Deep Impact (Hampton et al., 2005), CRISM (Murchie et al., 2007), EO-1 Hyperion (Ungar et al, 
2003, Middleton et al., 2013), M3 (Green et al., 2011) and MISE (now in development for Europa).  

NASA-guided engineering studies in 2014 and 2015 validated that a Landsat-class VSWIR 
imaging spectrometer instrument (380 to 2510 nm @ ≤10 nm sampling, Figure 6) with a 185 km 
swath, 30 m spatial sampling and 16 day revisit with high signal-to-noise ratio and the required 
spectroscopic uniformity, can be implemented affordably for a three year mission.  It would have a 
mass of <100 kg), require about 100 W of power), and fill a volume that is compatible with a 
Pegasus class launch or ride share (Figure 7). The telescope can be adapted to higher orbits. Such an 
instrument would provide global 16-day repeat coverage, while airborne equivalent measurements 
would take >10 years and cost >$1 billion. Additionally, much airspace is restricted or otherwise 
inaccessible making complete global coverage impossible. The key to these measurements is an 
optically fast spectrometer providing high SNR designed to accommodate the full spectral and spatial 
ranges (Mouroulis et al., 2016). A scalable prototype F/1.8 full VSWIR spectrometer (van Gorp et al., 
2014) has been developed, aligned, and is being qualified (Figure 8). Data rate and volume challenges 
have been addressed by development and testing of a lossless compression algorithm for spectral 
measurements (Klimesh et al., 2006, Aranki et al., 2009ab, Keymeulen et al., 2014). The algorithm is 
now a CCSDS standard (CCSDS 2015). With compression and the current Ka band downlink offered 
by KSAT and others, all terrestrial/coastal measurements can be downlinked (Figure 9). Algorithms for 
calibration (Green et al., 1998) and atmospheric correction (Gao et al., 1993, 2009, Thompson et al., 
2015, 2016) of large diverse data sets have been benchmarked as part of the HyspIRI preparatory 
campaign (Lee et al., 2015), the AVIRIS-NG India and Greenland campaigns, and other campaigns. 
There is good potential for international partnerships that would reduce the cost to NASA and 
accelerate the availability of the measurements.
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Science	and	
Applicaitons	Target Objectives

Physical Parameter Observable Measurement Requirements Other Measurement 
Characteristics

V.	Earth	Surface	and	
Interior:	Dynamics	and	
Hazards:	Core,	mantle,	
lithosphere,	and	
surface	processes,	
system	interactions,	
and	the	hazards	they	
generate.

Earth	Surface	
Geochemistry	and	
Mineralogy	for	
Geologic	Processes,	
Hazards,	Soils,	and	
Resources

O1.		New	insights	and	
constraints	on	
fundamental	geological	
processes

O2.		Assessment	and	
response	to	natural	
and	anthropogenic	
hazards

O3.		Advance	soil	
composition	and	
process	knowledge

O4.		Surface	Resource	
Identification	and	
Policy	Support

Spectral reflectance 
of the exposed 
surface from 

atmospherically 
corrected top of 

atmosphere spectral 
radiance

Spectral
• 450 to 2450 nm range
• ≤ 10 nm sampling
• ≤ 15 nm FWHM
• ≤ 1 nm calibraiton uncertainty

Radiometric
• 0 to max Lambert range
• 99% linear of 5 to 95 % of range
• SNR see figures 5, 6
• ≤ 5% calibraiton uncertainty

Spatial
• ≥ 90 km swath
• ≤ 30 m sampling
• ≤ 30 m 1ϭ uncertainty

Uniformity
•  ≤10% cross-track spectral variation
•  ≤10% spectral IFOV variation

Sun synchronous 
~11am crossing for 
good illumination 
and prior to cloud 

build up.

Cloud free 
measurement for ≥  

80% terrestrial 
exposed surface.

At least two years of 
measurement for 

capture of seasonal 
low vegetation states 

and fallow 
agricultural fields.

Pointable for 3 day 
revisit for event 

response.

Occurrence and fractional 
abundance estimate (0-
1.0 with uncertainty) of 
minerals and 
geochemicals expressed 
at exposed surface: 
• Iron oxides
• Sulfates
• Clays
• Carbonates
• Amphiboles
• Mafic minerals
• Hydrocarbons

Estimation of confounding 
factors: 
• Fractional surface cover 
for green and non-
photosynthetic vegetation  
• Water vapor, cirrus 
clouds, and aerosols

 
Table 1. The detailed traceability from science and applications targets to physical parameters, to 
observables, and to measurement requirements has been enabled by over a decade of imaging 
spectroscopy observations of the Earth, the Moon, Mars and other bodies in the Solar System. 
 
 

 
Figure 1. (left) Ten mineral reflectance spectra showing the diversity of absorption and scattering 
signatures tied to composition available for measurement in the 400 to 2500 nm region of the spectrum.  
Acquisition of such data enables highly accurate identification of Earth surface materials and 
assessment of their abundances.  (right) The same mineral spectra convolved to the Landsat TM bands 
showing the loss of spectroscopic information required for unambiguous identification and abundance 
estimation.  The broad-band sampling provided by the TM bands limits the analysis of the data largely 
to the relative brightness within each of the bands.  Brightness is complicated by sun angle, slope 
effects, shading, and other factors.  The utility of imaging spectroscopy is thus greatly enhanced over 
broad-band multispectral imaging. 
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Figure 2. (left) Airborne imaging spectrometer data set over Cuprite,NV. (center) Spectral feature 
fitting algorithm to detect and identify minerals based on their measured spectrum and the spectral 
signatures of known minerals from a spectral library. (right) Surface compositional map derived from 
spectroscopic signatures.  It is maps of this type that are required on a global scale.  Global coverage 
can only be achieved in any practical sense from Earth orbit. 
 
 
 
 
 

 
Figure 3. (left) Approximate natural color mosaic of a 2014 airborne imaging spectrometer data set 
over the Salton Sea region, CA. (right) Example spectral fits for surface mineralogy mapping from 
calibrated and atmospherically corrected spectra. 
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Figure 4. Surface mineral and soil maps from spectral fitting to airborne imaging spectrometer 
measurements of the Salton Sea Region, CA. (top) Clay, carbonate and other alteration minerals of 
interest. (bottom) Iron oxide and related minerals. This area of the Earth’s surface demonstrates the 
multitude of science and application targets that can be easily addressed with this type of data. 
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Figure 5. (left) Reference radiances for surface materials of 0.05, 0.25 and 0.75 reflectance illuminated 
at 45° through the standard mid latitude summer atmosphere. (right) Signal-to-noise ratios for the 
reference radiances that enable accurate surface mineral/composition and abundance estimation to 
achieve the designated Earth surface science and applications targets.  

 

 
Figure 6. (left) The Landsat and Sentinal-2 bands created by summing the narrow VSWIR spectral 
channels demonstrate the straightforward manner with which data continuity can be maintained with 
heritage multispectral data sets while utilizing the advanced capability of a full spectrum measurement 
from 380 to 2510 nm. (right) Signal-to-noise ratio for 30 m sampling with F/1.8 VSWIR Dyson 
imaging spectrometer for a range of reference radiances.  These are actual measured data acquired with 
a mature engineering model of the Dyson spectrometer.  The next step for the instrument is the 
spaceflight unit. 
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Figure 7. (left) Opto-mechanical configuration with one telescope feeding two field split wide swath 
F/1.8 VSWIR Dyson spectrometer providing 185 km swath and 30 m sampling. (center) Imaging 
spectrometer with spacecraft (248 kg, 670 W with margin) configured for launch in a Pegasus shroud 
for an orbit of 429 km altitude, 97.14 inclination to provide 16 day revisit for three years. (right) 
Orbital altitude and repeat options showing an altitude of 429 km with a fueled spacecraft supports the 
three year mission with the affordable Pegasus launch. Higher orbits are viable with a larger launch 
vehicle. 

 

 
Figure 8. Design of a wide swath F/1.8 VSWIR Dyson covering the spectral range from 380 to 2510 
nm. (right) Dyson imaging spectrometer in qualification that uses a full spectral range HgCdTe detector 
array. 

 
Figure 9. (left) Potential illuminated surface coverage every 16 days for the surface of the Earth. 
(right) On-board data storage usage for illuminated terrestrial/coastal regions with downlink using Ka 
Band (<900 mb/s) to KSAT Svalbard and Troll stations. Oceans and ice sheets can be spatially 
averaged for downlink. 



 
 

11 

References 
Ambers, RKR, (2001) Relationships between clay mineralogy, hydrothermal metamorphism, and 
topography in a Western Cascades watershed, Oregon, USA. Geomorphology 38, 47–61. 
 
Aranki, N., A. Bakshi, D. Keymeulen, and M. Klimesh (2009a). Fast and adaptive lossless onboard 
hyperspectral data compression system for space applications, 2009 IEEE Aerospace Conf., 7-14 
March. doi:10.1109/AERO.2009.4839534. 
 
Aranki, N., D. Keymeulen, A. Bakshi, and M. Klimesh (2009b). Hardware implementation of lossless 
adaptive and scalable hyperspectral data compression for space, NASA ESA Conf. Adap. Hardware 
Sys., 29 July – 1 Aug. doi:10.1109/AHS.2009.66. 
 
Bartholomeus, H.M., Schaepman, M.E., Kooistra, L., Stevens, A., Hoogmoed, W.B., & Spaargaren, 
O.S.P. (2008). Spectral reflectance based indices for soil organic carbon quantification. Geoderma, 
145, 28-36 
 
Bassani, C. et al. (2007) Deterioration status of asbestos-cement roofing sheets assessed by analyzing 
hyperspectral data. Remote Sensing of Environment, 109, 3, 361-378. 
 
Bedini, E. (2011), Mineral mapping in the Kap Simpson complex, central east Greenland, using 
HyMap and ASTER remote sensing data, Advances in Space Research, 47, 60-73, 
doi:10.1016/j.asr.2010.08.021. 
 
Ben-Dor, E., & Banin, A. (1995). Near-Infrared Analysis as a Rapid Method to Simultaneously 
Evaluate Several Soil Properties. Soil Science Society of America Journal, 59, 364-372. 
 
Ben-Dor, E., Chabrillat, S., Demattê, J.A.M., Taylor, G.R., Hill, J., Whiting, M.L., & Sommer, S. 
(2009). Using Imaging Spectroscopy to study soil properties. Remote Sensing Of Environment, 113, 
Supplement 1, S38-S55 
 
Ben-dor, E., Goldshleger, N., Braun, O., Kindel, B., Goetz, A.F.H., Bonfil, D., Margalit, N., 
Binaymini, Y., Karnieli, A., & Agassi, M. (2004). Monitoring infiltration rates in semiarid soils using 
airborne hyperspectral technology. International Journal of Remote Sensing, 25, 2607-2624 
 
Ben-Dor, E., Levin, N., Singer, A., Karnieli, A., Braun, O., & Kidron, G.J. (2006). Quantitative 
mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor. 
Geoderma, 131, 1-21 
 
Ben-Dor, E., Patkin, K., Banin, A., & Karnieli, A. (2002). Mapping of several soil properties using 
DAIS-7915 hyperspectral scanner data-a case study over clayey soils in Israel. International Journal of 
Remote Sensing, 23, 1043-1062 
 
Boggs, J.L., Tsegaye, T., Coleman, T.L., Reddy, K., & Fahsi, A. (2003). Relationship between 
hyperspectral reflectance, soil nitrate-nitrogen, cotton leaf chlorophyll, and cotton yield: a step toward 
precision agriculture. Journal of Sustainable Agriculture, 22, 5-16Brown et al., 2004 
 
Brown, R. H., et al. (2004) The Cassin Visual and Infrared Mapping Spectrometer (VIMS) 
Investigation.,” Space Science Reviews 115: 111–168, 2004 



 
 

12 

 
Calvin, Wendy M., and Elizabeth L. Pace. (2016) Utilizing HyspIRI Prototype Data for Geological 
Exploration Applications: A Southern California Case Study. Geosciences 6: p.14. 
 
Carlson, R. W., Weissman, P. R., Smythe, W. D., & Mahoney, J. C., (1992) Near-Infrared Mapping 
Spectrometer experiment on Galileo, Space Science Reviews (ISSN 0038-6308), 60 (1-4), p. 457-502. 
 
CCSDS, “LOSSLESS MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION 
INFORMATIONAL REPORT,” CCSDS 120.2-G-1, GREEN BOOK, 2015, 
http://public.ccsds.org/publications/archive/120x2g1.pdf 
 
Choe E. et al., (2008) Mapping of heavy metal pollution in stream sediments using combined 
geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar 
mining area, SE Spain. Remote Sensing of Environment 112 3222–3233. 
 
Chudnovsky, A., et al. (2009) Mineral content analysis of atmospheric dust using hyperspectral 
information from space." Geophysical Research Letters 36.15. 
 
Claquin, T., M. Schulz, and Y. J. Balkanski (1999), Modeling the mineralogy of atmospheric dust 
sources, Journal of Geophysical Research-Atmospheres, 104(D18), 22243-22256, 
doi:10.1029/1999jd900416. 
 
Clark, R.N., (1999) Chapter 1: Spectroscopy of Rocks and Minerals and Principles of Spectroscopy, 
Manual of Remote Sensing, (A.N. Rencz, ed.) John Wiley and Sons, New York, p 3-58, 1999. Online 
at: http://speclab.cr.usgs.gov/PAPERS.refl-mrs/ 
 
Clark, R.N., Swayze, G.A., Livo, K.E., Kokaly, R.F., Sutley, S.J., Dalton, J.B., McDougal, R.R., and 
Gent, C.A., (2003) Imaging spectroscopy: Earth and planetary remote sensing with the USGS 
Tetracorder and expert systems, Journal of Geophysical Research, Vol. 108(E12), 5131, 
doi:10.1029/2002JE001847, p. 5-1 to 5-44, December, 2003. 
http://speclab.cr.usgs.gov/PAPERS/tetracorder 
 
Clark, R.N., Swayze, G.A., Leifer, I. Livo, K.E., Kokaly, R., Hoefen, T., Lundeen, S., Eastwood, M., 
Green, R.O., Pearson, N., Sarture, C., McCubbin, I., Roberts, D., Bradley, E., Steele, D., Ryan, T., 
Dominguez, R., and the Air borne Visible/Infrared Imaging Spectrometer (AVIRIS) Team, (2010) A 
method for quantitative mapping of thick oil spills using imaging spectroscopy: U.S. Geological 
Survey Open-File Report 20101167, 51 p. http://pubs.usgs.gov/of/2010/1167/  
 
Clark, R.N., and Wise, R.A. (2011) Mapping with imaging spectroscopy, Fort Cobb Reservoir 
watershed, southwestern Oklahoma, Chapter 6 of Becker, C.J., ed., Assessment of conservation 
practices in the Fort Cobb Reservoir watershed, southwestern Oklahoma: U.S. Geological Survey 
Scientific Investigations Report 2010-5257, 23 p. http://pubs.usgs.gov/sir/2010/5257/Chapter6.pdf 
 
Clark, R. N., G. A Swayze, R. Carlson, W. Grundy, and K. Noll (2014) Spectroscopy from Space, 
Chapter 10 in Spectroscopic Methods in Mineralogy and Material Sciences, Reviews in Mineralogy & 
Geochemistry, Grant Henderson, ed, Mineralogical Society of America 78, 399-446.  
 
Clenet, H et al., (2010) Thick sections of layered ultramafic cumulates in the Oman ophiolite revealed 



 
 

13 

by an airborne hyperspectral survey: Petrogenesis and relationship to mantle diapirism. Lithos, 114, 
265-281. 
 
Crowley, James K., and David R. Zimbelman. (1997) Mapping hydrothermally altered rocks on Mount 
Rainier, Washington, with airborne visible/infrared imaging spectrometer (AVIRIS) data. Geology 
25.6: 559-562.  
 
Crowley, J.K., Hubbard, B.E., Mars, J.C. Analysis of potential debris flow source areas on Mount 
Shasta, California, by using airborne and satellite remote sensing data. Remote Sensing of 
Environment, 87, 2-3, 345-358, 2003. 
 
Cudahy, T. J., et al. (2001) The performance of the satellite-borne Hyperion Hyperspectral VNIR-
SWIR imaging system for mineral mapping at Mount Fitton, South Australia." Geoscience and remote 
sensing symposium, 2001. IGARSS'01. IEEE 2001 International. Vol. 1. IEEE. 
 
Cudahy, T. et al. (2016) Satellite-derived mineral mapping and monitoring of weathering, deposition 
and erosion. Scientific Reports 6, Article number: 23702, doi:10.1038/srep23702 
 
De Jong, S.M., Addink, E.A., Van Beek, R., & Duijsings, D. (2009). Mapping of soil surface crusts 
using airborne hyperspectral HyMap imagery in a Mediterranean environment. Anais XIV Simpósio 
Brasileiro de Sensoriamento Remoto, 25-30 
 
De Sanctis, M. C., et al. (2013), Vesta's mineralogical composition as revealed by the visible and 
infrared spectrometer on Dawn, Meteoritics & Planetary Science, 48(11), 2166-2184, 
doi:10.1111/maps.12138. 
 
Dehaan, R., & Taylor, G.R. (2003). Image-derived spectral endmembers as indicators of salinisation. 
International Journal of Remote Sensing, 24, 775-794 
 
Dehaan, R.L., & Taylor, G.R. (2002). Field-derived spectra of salinized soils and vegetation as 
indicators of irrigation-induced soil salinization. Remote Sensing Of Environment, 80, 406-417 
 
Demattê, J.A.M., & Nanni, M.R. (2003). Weathering sequence of soils developed from basalt as 
evaluated by laboratory (IRIS), airborne (AVIRIS) and orbital (TM) sensors. International Journal of 
Remote Sensing, 24, 4715-4738 
 
DeTar, W.R., Chesson, J.H., Penner, J.V., & Ojala, J.C. (2008). Detection of soil properties with 
airborne hyperspectral measurements of bare fields. Transactions of the ASABE, 51, 463-470Frassy et 
al., 2014 
 
Frassy, F. et al. (2014) Mapping Asbestos-Cement Roofing with Hyperspectral Remote Sensing over a 
Large Mountain Region of the Italian Western Alps. Sensors, 14, 15900-15913. 
 
Galvão, L.S., Formaggio, A.R., Couto, E.G., & Roberts, D.A. (2008). Relationships between the 
mineralogical and chemical composition of tropical soils and topography from hyperspectral remote 
sensing data. Isprs Journal of Photogrammetry and Remote Sensing, 63, 259-271 
 
Gao, B.-C., K. Heidebrecht, and A. Goetz (1993). Derivation of scaled surface reflectances from 



 
 

14 

AVIRIS data, Remote Sens. of Environ., 44, 165-178. doi:10.1016/0034- 4257(93)90014-O. 
 
Gao, B.-C., M. Montes, C. Davis, and A. Goetz (2009). Atmospheric correction algorithms for 
hyperspectral remote sensing data of land and ocean, Remote Sens. of Environ., 113, 17-24. 
doi:10.1016/j.rse.2007.12.015. 
 
Gersman, Ronen, et al. (2008) Mapping of hydrothermally altered rocks by the EO-1 Hyperion sensor, 
Northern Danakil Depression, Eritrea." International Journal of Remote Sensing 29.13: 3911-3936. 
 
Goldshleger, N., Ben-Dor, E., Benyamini, Y., Agassi, M., & Blumberg, D.G. (2001). Characterization 
of soil’s structural crust by spectral reflectance in the SWIR region (1.2–2.5 µm). Terra Nova, 13, 12-
17 
 
Gomez, C., Viscarra Rossel, R.A., & McBratney, A.B. (2008). Soil organic carbon prediction by 
hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma, 
146, 403-411 
 
Green, Robert O., et al. (1998) Imaging spectroscopy and the airborne visible/infrared imaging 
spectrometer (AVIRIS). Remote Sensing of Environment 65.3: 227-248. 
 
Green, R. O., et al. (2011) The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar 
science: Instrument description, calibration, on-orbit measurements, science data calibration and 
on-orbit validation. Journal of Geophysical Research: Planets 116.E10. 
 
Guerrieri, L., L. Merucci, S. Corradini, and S. Pugnaghi (2015), Evolution of the 2011 Mt. Etna ash 
and SO2 lava fountain episodes using SEVIRI data and VPR retrieval approach, Journal of 
Volcanology and Geothermal Research, 291, 63-71, doi:10.1016/j.jvolgeores.2014.12.016. 
 
Hamlin, L., et al. (2011) Imaging spectrometer science measurements for terrestrial ecology: AVIRIS 
and new developments." Aerospace Conference, IEEE, p. 1-7. 
 
Hampton, Donald L., et al. (2005) An overview of the instrument suite for the Deep Impact mission. 
Space Science Reviews 117.1-2: 43-93. 
 
Hoefen, T. M. et al. (2015) Characterizing geology and mineralization at high latitudes in Alaska using 
airborne and field-based imaging spectrometer data. American Geophysical Union Fall Meeting, 2015, 
AGU 2015 Fall Meeting, abstract GC23K-1231. 
 
Hong, Y., Adler, R. & Huffman, G. (2007) Use of satellite remote sensing data in the mapping of 
global landslide susceptibility. Nat. Hazards. 43, 245–256. 
 
Hubbard, Bernard. (2015) Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris 
Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, 
Southern California. American Geophysical Union Fall Meeting, abstract GC23K-1229. 
 
Keymeulen, D., N. Aranki, A. Bakhshi, H. Luong, C. Sarture, D. Dolman (2014). Airborne 
Demonstration of FPGA implementation of Fast Lossless Hyperspectral Data Compression 
System, Adap. Hard. Sys. Conf., 278-284. doi:10.1109/AHS.2014.6880188. 



 
 

15 

 
King, T.V.V., Kokley, R.F., Hoefen, T.M., and Johnson, M.R. (2012). Hyperspectral remote sensing 
data maps minerals in Afghanistan: Eos, 93(34), 325-326. 
 
Klimesh, M. (2006). Low-Complexity Adaptive Lossless Compression of Hyperspectral 
Imagery, Proc. SPIE Optics & Photonics Conference, 6300, 9. doi:10.1117/12.682624. 
 
Kokaly, R. F., King, T. V. V., Hoefen, T. M., Dudek, K. B., & Livo, K. E. (2011). Surface materials 
map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials: US 
Geological Survey Scientific Investigations Map 3152–A, one sheet, scale 1: 1,100,000. Also available 
at http://pubs. usgs. gov/sim/3152/A. 
 
Kokaly, R.F., King, T.V.V., and Hoefen, T.M. (2013). Surface mineral maps of Afghanistan derived 
from HyMap imaging spectrometer data, version 2: U.S. Geological Survey Data Series 787, 29 p., 
http://pubs.usgs.gov/ds/787/. 
 
Kruse, FA, JW Boardman, and JF Huntington. (2003) Comparison of airborne hyperspectral data and 
EO-1 Hyperion for mineral mapping. Geoscience and Remote Sensing, IEEE Transactions on 41.6: 
1388-1400. 
 
Kruse, Fred A. (2012) Mapping surface mineralogy using imaging spectrometry. Geomorphology 
137.1: 41-56. 
 
Kruse, Fred A., et al. (2012) Mapping alteration minerals at prospect, outcrop and drill core scales 
using imaging spectrometry. International journal of remote sensing 33.6: 1780-1798. 
 
Lagacherie, P., Gomez, C., Bailly, J.S., Baret, F., & Coulouma, G. (2010). The use of hyperspectral 
imagery for digital soil mapping in mediterranean areas. Digital Soil Mapping (pp. 93-102): Springer 
 
Lee, Christine M., et al. (2015) An introduction to the NASA Hyperspectral InfraRed Imager 
(HyspIRI) mission and preparatory activities. Remote Sensing of Environment 167: 6-19. 
 
Lobell, DB and GP Asner. (2001) Moisture Effects on Soil Reflectance. Soil Science Society of 
America Journal, 66(3), 722-727. 
 
Mars, J. (2011) Regional mapping methods using ASTER data to map minerals in the U.S. Basin and 
Range, (U. S. Geological Survey, Reston, VA, United States) Source: American Geophysical Union 
Fall Meeting, 2011, American Geophysical Union 2011 Fall Meeting, abstract #V11C-2527. 
 
Mercury, M., R. Green, S. Hook, B. Oaida, W. Wu, A. Gunderson, and M. Chodas (2012), Global 
cloud cover for assessment of optical satellite observation opportunities: A HyspIRI case study, Remote 
Sensing of Environment, 126, 62-71, doi:10.1016/j.rse.2012.08.007. 
 
Metelka, V., L. Baratoux, M. W. Jessell, and S. Naba (2015), Visible and infrared properties of 
unaltered to weathered rocks from Precambrian granite-greenstone terrains of the West African Craton, 
Journal of African Earth Sciences, 112, 570-585, doi:10.1016/j.jafrearsci.2015.10.003. 
 
Metternicht, G., Hurni, L., Gogu, R. (2005) Remote sensing of landslides: An analysis of the potential 



 
 

16 

contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote 
Sensing of Environment, 98, 2-3, 284-303. 
 
Middleton EM, Ungar SG, Mandl DJ, Ong L, Frye SW, Campbell PE, Landis DR, Young JP, Pollack 
NH. (2013) The earth observing one (EO-1) satellite mission: Over a decade in space. Selected Topics 
in Applied Earth Observations and Remote Sensing, IEEE Journal Apr;6(2):243-56. 
 
Mouroulis, P., R. O. Green, B. Van Gorp, L. B. Moore, D. W. Wilson, H. Bender (2016): “Landsat 
swath imaging spectrometer design”, Optical Engineering 55(1) 015104 doi:10.1117/1.OE.55.1.015104 
 
Murchie, S., et al. (2007) Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars 
reconnaissance orbiter (MRO).  Journal of Geophysical Research: Planets, 112.E5, 57 p. 
 
Murchie, S. L., et al. (2009), A synthesis of Martian aqueous mineralogy after 1 Mars year of 
observations from the Mars Reconnaissance Orbiter, Journal of Geophysical Research-Planets, 114, 
doi:10.1029/2009je003342. 
 
NASA (2014) Strategic Plan 2014. Available on line 
http://science.nasa.gov/media/medialibrary/2014/04/18/FY2014_NASA_StrategicPlan_508c.pdf last 
accessed May 8, 2016. 
 
NRC (2007) Earth Science and Applications from Space: National Imperatives for the Next Decade 
and Beyond. National Academies Press, Washington, D.C. 
 
NRC (2010) Landscapes on the Edge: New Horizons for Research on Earth’s Surface. National 
Academies Press, Washington, D.C. 
 
NRC (2012) New Research Opportunities in the Earth Sciences. National Academies Press, 
Washington, D.C. 
 
NRC (2013) Landsat and Beyond: Sustaining and Enhancing the Nation's Land Imaging Program, 
National Academies Press, Washington, D.C. 
 
NSF Critical Zone Report (2005) Frontiers in Exploration of the Critical Zone, 
http://www.czen.org/sites/default/files/CZEN_Booklet.pdf 
 
Opfergelt S, Delmelle P, Boivin P, Delvaux B (2006) The 1998 debris avalanche at Casita volcano, 
Nicaragua: investigation of the role of hydrothermal smectite in promoting slope instability. Geophys 
Res Lett 33(15):4. doi:10.1029/2006gl026661 
 
Pieters, C. M., et al. (2011), Mg-spinel lithology: A new rock type on the lunar farside, Journal of 
Geophysical Research-Planets, 116, doi:10.1029/2010je003727. 
 
Riaza, A., Buzzi, J., Garcia-Melenzed, E, Carrere, V, Muller, A, (2011) Monitoring the Extent of 
Contamination from Acid Mine Drainage in the Iberian Pyrite Belt (SW Spain) Using Hyperspectral 
Imagery . Remote Sens., 3, 2166-2186, doi:10.3390/rs3102166 
 
Rocha-Lima, A., J. V. Martins, L. A. Remer, N. A. Krotkov, M. H. Tabacniks, Y. Ben-Ami, and P. 



 
 

17 

Artaxo (2014), Optical, microphysical and compositional properties of the Eyjafjallajokull volcanic 
ash, Atmospheric Chemistry and Physics, 14(19), 10649-10661, doi:10.5194/acp-14-10649-2014. 
 
Rockwell, B. W., and A. H. Hofstra (2008), Identification of quartz and carbonate minerals across 
northern Nevada using ASTER thermal infrared emissivity data - Implications for geologic mapping 
and mineral resource investigations in well-studied and frontier areas, Geosphere, 4(1), 218-246, 
doi:10.1130/ges00126.1. 
 
Rowan, L. C., J. C. Mars, and C. J. Simpson (2005), Lithologic mapping of the Mordor, NT, Australia 
ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER), Remote Sensing of Environment, 99(1-2), 105-126, doi:10.1016/j.rse.2004.11.021. 
 
Rowan, Lawrence C., et al. (1995) Analysis of airborne visible-infrared imaging spectrometer 
(AVIRIS) data of the Iron Hill, Colorado, carbonatite-alkalic igneous complex." Economic Geology 
90.7: 1966-1982. 
 
Roy, R., Launeau, P., Carrère, V., Pinet, P.C., Ceuleneer, G., Clénet, H., Daydou, Y., Girardeau, J., 
Amri, I., (2008) Geological mapping strategy using VNIR hyperspectral remote sensing: application to 
the Oman ophiolite (Sumail Massif). Geochemistry Geophysics Geosystems 10, Q02004. 
doi:10.1029/2008GC002154. 
 
Sabins, Floyd F. (1999) Remote sensing for mineral exploration. Ore Geology Reviews 14.3: 157-183. 
 
Slonecker, ET, Fischer, GB. (2014) An Evaluation of Remote Sensing Technologies for the Detection 
of Residual Contamination at Ready-for Anticipated Use Sites. US Geological Survey Open-File 
Report 2014-1197, 25p. 
 
Soeters R. & Van Westen C.J. (1996) Slope instability, recognition, analysis and zonation. In: Turner, 
A. K. & Schuster R. L. (eds) Landslides: Investigation and Mitigation. Special Report, 247. 
Transportation Board, Washington, 129–173. 
 
Stevens, A., Udelhoven, T., Denis, A., Tychon, B., Lioy, R., Hoffmann, L., & van Wesemael, B. 
(2010). Measuring soil organic carbon in croplands at regional scale using airborne imaging 
spectroscopy. Geoderma, 158, 32-45 
 
Stevens, A., van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B., & Ben-Dor, E. (2008). 
Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. 
Geoderma, 144, 395-404 
 
Swayze, Gregg A., et al. (2000) Using imaging spectroscopy to map acidic mine waste." 
Environmental Science & Technology 34.1: 47-54. 
 
Swayze, G. A., R. N. Clark, A. F. H. Goetz, T. G. Chrien, and N. S. Gorelick, (2003) Effects of 
spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the 
Tetracorder algorithm, J. Geophys. Res., 108(E9), 5105, doi:10.1029/2002JE001975 
 
Swayze, Gregg A., et al. (2009) Mapping potentially asbestos-bearing rocks using imaging 
spectroscopy. Geology 37.8 763-766. 



 
 

18 

 
Swayze, Gregg A., et al. (2014) Mapping advanced argillic alteration at Cuprite, Nevada, using 
imaging spectroscopy. Economic Geology 109.5: 1179-1221. 
 
Thompson, David R., et al. (2015) Atmospheric correction for global mapping spectroscopy: ATREM 
advances for the HyspIRI preparatory campaign. Remote Sensing of Environment 167: 64-77. 
 
Thompson, D., Dar A. Roberts, B.C. Gao, R.O. Green, L. Guild, K. Hayashi, R. Kudela, and S. 
Palacios, (2016) Atmospheric correction with the Bayesian empirical line, Opt. Express 24, 2134-2144. 
 
Ungar, Stephen G., et al. (2003) Overview of the earth observing one (EO-1) mission. Geoscience and 
Remote Sensing, IEEE Transactions on 41.6: 1149-1159. 
 
USGS (2007) Facing tomorrow’s challenges—U.S. Geological Survey science in the decade 2007–
2017: U.S. Geological Survey Circular 1309, x + 70 p. 
 
Van Gorp, B., P. Mouroulis, D. W. Wilson, R. O. Green, (2014) Design of the Compact Wide Swath 
Imaging Spectrometer (CWIS), Proc. SPIE 9222, 92220C, doi:10.1117/12.2062886 
 
Vane, Gregg, Alexander FH Goetz, and John B. Wellman. (1984) Airborne imaging spectrometer: A 
new tool for remote sensing. Geoscience and Remote Sensing, IEEE Transactions on 6: 546-549. 
 
Whiting, M.L., Ustin, S.L., Zarco-Tejada, P., Palacios-Orueta, A., & Vanderbilt, V.C. (2006). 
Hyperspectral mapping of crop and soils for precision agriculture. In Remote Sensing and Modeling of 
Ecosystems for Sustainability III, edited by Wei Gao, Susan L. Ustin, 
Proc. of SPIE Vol. 6298, 62980B, 15 p., doi: 10.1117/12.681289. 
 
Whitworth, MCZ, Giles, D.P, Murphy, W.  (2005)Airborne remote sensing for landslide hazard 
assessment: a case study on the Jurassic escarpment slopes of Worcestershire, UK. Quarterly Journal of 
Engineering Geology and Hydrogeology, 38, 285–300. 
 
Wright, R., H. Garbeil, and A. J. L. Harris (2008) Using infrared satellite data to drive a thermo-
rheological/stochastic lava flow emplacement model: A method for near-real-time volcanic hazard 
assessment, Geophysical Research Letters, 35(19), doi:10.1029/2008gl035228. 
 


